Posts in Internet of Things

Unlocking the Potential of IoT: How Favoriot’s Platform and IoT Kits Can Transform Education

March 23rd, 2023 Posted by BLOG, HOW-TO, Internet of Things, IOT PLATFORM, PARTNER, TIPS 0 thoughts on “Unlocking the Potential of IoT: How Favoriot’s Platform and IoT Kits Can Transform Education”

Favoriot, a leading IoT platform provider, offers a subscription service that enables individuals and businesses to build and manage IoT projects quickly. But how can universities benefit from using an IoT kit in teaching, learning, and developing IoT projects?

An IoT kit can benefit universities and their students, including hands-on learning and accessibility to affordable components. Additionally, it can prepare students for a career in IoT, a rapidly growing field with high demand for skilled professionals.

Incorporating IoT into the curriculum can help universities stay up-to-date with the latest trends and technologies. Furthermore, using Favoriot’s platform with an IoT kit can provide a comprehensive and effective solution for teaching, learning, and developing IoT projects.

Favoriot’s platform offers many features, including real-time data visualization, data analytics, and data management, making it easier for students and professors to manage and analyze their IoT projects. The platform is also user-friendly, with an intuitive interface allowing even beginners to learn and use it quickly.

In conclusion, using an IoT kit and Favoriot’s platform can provide a powerful tool for teaching, learning, and developing university IoT projects. It can make learning IoT more accessible and affordable, provide hands-on experience with the latest IoT technologies and tools, and help universities stay up-to-date with the latest trends and technologies in the field of technology. By incorporating this technology into their curriculum, universities can prepare students for a successful career in this exciting and rapidly growing field.

How to Subscribe FAVORIOT Bundle Plan

  1. Go to – Favoriot Subscription Page
  2. Click Sign Up Here.
  3. Enter profile details
  4. Choose the Bundle Plan as shown below and click Submit.
  5. Enter your details (including delivery address) and make payment.

Hibiscus Sense – The IoT Kit

The Hibiscus Sense is an Internet of Things (IoT) development board powered by the mighty and popular dual-core ESP32 microcontroller, embedded with 3 sensors (APDS9960, BME280 & MPU6050) and 2 actuators (Buzzer & LED / RGB LED), makes it easy for you to kick start your awesome IoT project. Since the microcontroller is the mighty ESP32, this development board is compatible to be programmed using tools such as Arduino IDE (for Arduino programming language), Thonny IDE (Micropython programming language) or ESP-IDF (C, C++ programming language), simply use the latest USB Type-C to program the microcontroller, which has built-in USB-to-Serial converter (Silicon Labs CP2104) with automatic bootloader reset, so you don’t have to press the RESET button each time to upload the program into the microcontroller.

The ESP32 microcontroller comes with 4 MB of SPI Flash running at 240MHz, support both WiFi and BLE connectivity and also the ESP-NOW protocols, which develop by Espressif for low-power 2.4GHz wireless connectivity. The variety of connectivity gives you the freedom and flexibility to develop wireless sensor platform using Hibiscus Sense to be connected to other wireless connectivity such as the BLE on your smartphone, to visualise the data on the mobile app. It’s indeed perfect for your wireless or IoT projects.

Hibiscus sense comes with pre-assembled header makes it easy for you to plug the board on top of the breadboard or on the female header on your DIY PCB projects. There are plenty open GPIOs for you to work with digital inputs and outputs, analog inputs and outputs and multiple extra peripherals, such as UART the RX/TX, I2C and SPI.

Hibiscus Sense is the best board for those who work out for data science and data exploration, as it can easily generate real-time data from rich profusion of sensors on board. The sensors, enables you to sense the physical movement and environment around the board, which total of 13 parameters can be measured:

  • APDS9960 – An environment sensor, which sense proximitycolour and gesture.
  • MPU6050 – 6 Degree of Freedom (DoF) IMU (Inertial Measurement Unit), the accelerometer and gyroscope.
  • BME280 – An environment sensor, which measure the altitudebarometric pressurehumidity and temperature.

FEATURES

  • ESP32 running at 240MHz
  • 4MB SPI flash and 520 KB SRAM
  • USB Type-C with Silicon Labs CP2014 USB-to-Serial converter with automatic bootloader reset.
  • Integrated WiFi, Bluetooth and ESP-NOW wireless protocols
  • FCC / CE / IC & others certified module
  • RESET and GPIO 0 pushbuttons
  • 25 GPIOs, including ADC, DAC, UART, I2C and SPI
  • Blue LED connected to ESP32 GPIO2
  • RGB LED connected to ESP32 GPIO16
  • Buzzer connected to ESP32 GPIO13
  • APDS9960, BME280 and MPU6050 connected to ESP32 I2C
  • Board measurement including header in mm – 58.7 x 27 x 13.3 (length x width x height)
  • Package measurement in mm: 71.8 x 35.5 x 20.4 (length x width x height)

DOCUMENTATION

The comprehensive tutorial for Hibiscus Sense is provided on Github:

SHIPPING LIST

  • 1x Hibiscus Sense
  • 1x USB Type C

Internet of Things (IoT) – Technical Regulatory Aspects & Key Challenges

April 10th, 2018 Posted by Internet of Things 0 thoughts on “Internet of Things (IoT) – Technical Regulatory Aspects & Key Challenges”

You can download the full PDF Version HERE.

Automatic Electromagnetic Radiation Level Detection and Monitoring System

April 10th, 2018 Posted by HOW-TO, Internet of Things, IOT PLATFORM 0 thoughts on “Automatic Electromagnetic Radiation Level Detection and Monitoring System”

 In some cities, mobile phone Base Transceiver Stations (BTSs) are found almost at every 500 m interval, and in other cities where there is no restriction on the location of the towers, more than 30 cell towers can be seen within 1 km. Since more users are emerging every day, the proliferation of mobile Base Transceiver Station (BTS) or mast is of great concern. The radiation emitted from the numerous antennas mounted on the mast of the cell are also of great concerns to the populace, especially people who live close to them.

Therefore, it is compulsory to extract the value of Electric (E) -field (volts/meter) from the individual frequency components of the GSM bands such as 0.9 GHz, 1.8 GHz and 2.1 GHz to be compared with ICNIRP level. Therefore, the main interest for this project is to measure the mobile signal from the base stations, which are mostly close to the residential area covering the GSM bands of 0.9 GHz, 1.8 GHz, and 2.1 GHz.

Currently, the radiated emissions from the GSM tower are detected by the spectrum analyzer which mobile frequency band network systems. However, the spectrum analyzer does not have any provision to broadcast or transmit any information obtained in the field over the internet. In addition, the data measured by spectrum analyzer is offline and not a real time results. It is difficult to give a real picture of the electromagnetic (EM) radiation level in the intended environment. Electromagnetic radiation should not exceed the radiation limit proposed by ICNIRP.

Therefore, this maximum allowable E-field limit has to be followed for human safety. Electromagnetic radiation readings below the radiation limit indicate that the radiations in that specific area are within the safety levels. Therefore, an automatic system capable of measuring the electric (E) fields at the mobile phone frequencies (0.9 GHz, 1.8 GHz, and 2.1 GHz) is designed as shown in Figure 1. These E-field data will then be “pushed” into the internet for continuous monitoring (24 hours a day). The designed unit acted as receiver / EM mobile sensor, consist of an antenna and detector that can produce an accurate DC voltage and eventually convert it into electric (E) field with calculated antenna factor (AF).

Figure 1: Overall system layout

A radiation detector complete system as shown in Figure 2. It consists of receiver sensor (antenna), 3V circuit, WIFI shield, and microcontroller. The rectangular patch antenna is the receiver to receive a signal from the base transceiver station. The microcontroller received the input voltage from the detector and convert it to E-field value. In addition, WIFI shield is the medium hub to connect the Arduino to FavoriotPlatform through Internet. The extracted E field information would be plotted for each frequency in the FavorIoT Platform. As a result, the user can access the data via any internet enabled devices. The complete system will be placed in the proposed packaging as shown in Figure 3. 

Figure 2: Measurement setup

Figure 3: Proposed packaging for the complete system

The new system has been calibrated and compared with an existing system in the market. Figure 4 shows the comparison between the existing system (using spectrum analyzer and horn antenna) and our product. Based on the results, the E field strength values show a good agreement as the percentage of deviation is quite small which is an average of 2%. The uncertainty of the measurement is ±4.6478 dB. Therefore, E field values for 0.9 GHz, 1.8 GHz, and 2.1 GHz are valid for the measurement as the maximum deviation is 2.4 dB, which is still in the range of the uncertainty. Therefore, the fabricated rectangular patch antenna can be used to detect mobile electromagnetic radiation accurately. 

Figure 4: Comparison measurement using a new system and existing system in the market

The E field strength was calculated and the real-time data measurement was stored and displayed in the Favoriot platform. Figure 5 shows the E field strength data for operating frequencies of 0.9 GHz, 1.8 GHz, and 2.1 GHz. 121.28 dBuV/m is the maximum radiation reading shown in Figure 5. The reading does not exceed the radiation limit proposed by ICNIRF level, which is 155 dBuV/m. The result and data can be accessed by the end user using through Favoriot Platform. 

Figure 5: E field strength graph display in Favoriot

The Author is Puteri Alifah Ilyana Nor Rahim and Supervisor is Syarfa Zahirah Sapuan from UTHM, our FAVORIOT-University collaborator.

Copyright © 2025 All rights reserved